SUV39H1 Reduction Is Implicated in Abnormal Inflammation in COPD

نویسندگان

  • Tzu-Tao Chen
  • Sheng-Ming Wu
  • Shu-Chuan Ho
  • Hsiao-Chi Chuang
  • Chien-Ying Liu
  • Yao-Fei Chan
  • Lu-Wei Kuo
  • Po-Hao Feng
  • Wen-Te Liu
  • Kuan-Yuan Chen
  • Ta-Chih Hsiao
  • Jer-Nan Juang
  • Kang-Yun Lee
چکیده

Chronic obstructive pulmonary disease(COPD) is characterized by enhanced chronic inflammation in the airways, lung parenchyma, and circulation. We investigated whether SUV39H1, a histone methyltransferase, is causatively implicated in the abnormal inflammation observed in COPD. The SUV39H1 and H3K9me3 levels were reduced in peripheral blood mononuclear cells(PBMCs), primary human small airway epithelial cells(HSAEpCs) and lung tissues from COPD patients, which were correlated with poor lung function and the serum IL-8 and IL-6 levels. A specific SUV39H1 inhibitor, chaetocin, induced a distinct COPD panel of inflammatory cytokines in normal PBMCs. Mechanistically, chaetocin reduced the SUV39H1 and H3K9me3 levels in the native IL-8 promoter in normal HSAEpCs, which mimicked unstimulated COPD HSAEpCs and led to decreased HP-1α levels and increased RNA polymerase II levels. SUV39H1 knockdown reproduced the pattern of COPD inflammation, whereas SUV39H1 overexpression in COPD HSAEpCs rescued the H3K9me3 levels and suppressed inflammation. In COPD mice, chaetocin further repressed the SUV39H1/H3K9me3 levels and enhanced inflammation. SUV39H1 epigenetically controls a distinct panel of pro-inflammatory cytokines. Its reduction in COPD leads to a loss of the repressive chromatin mark H3K9me3 and confers an abnormal inflammatory response to stimulators. SUV39H1 and its regulatory pathways are potential therapeutic targets for COPD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homocystein Level and Total Antioxidant Capacity in Chronic Obstructive Pulmonary Disease

Abstract Background and Objective: Oxidant-antioxidant imbalance plays a key role in pathogenesis of chronic obstructive pulmonary disease (COPD). This study aimed to evaluate homocystiene and total antioxidant capacity in COPD patients, compared to smoker and non-smoker healthy people. Material and Methods: We measured total antioxidant capacity with Cayman Kit, uric acid with Pars Azm...

متن کامل

Dynamic hyperinflation and pulmonary inflammation: a potentially relevant relationship?

In patients with moderate-to-severe chronic obstructive pulmonary disease (COPD), end-expiratory lung volume increases under conditions of greater minute ventilation (e.g. exercise). This abnormal response is termed dynamic hyperinflation (DH) and has now been recognised as a key determinant of symptomatology and exercise intolerance in COPD. Reduced elastic recoil, loss of alveolar attachments...

متن کامل

Effect of vitamin C on tracheal responsiveness and pulmonary inflammation in chronic obstructive pulmonary disease model of guinea pig

Introduction: In the present study, the prophylactic effect of vitamin C, as a potent anti-oxidant, on tracheal responsiveness to methacholine and ovalbumin, bronchoalveolar lavage fluid white blood cell (WBC) count and differential count, and also lung pathology in chronic obstructive pulmonary disease (COPD) -guinea pigs (cigarette exposed guinea pigs) were examined. In addition, the relax...

متن کامل

Sirtuin 1 and Aging Theory for Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary disease (COPD) is an inflammatory syndrome that represents an increasing health problem, especially in the elderly population. Drug therapies are symptomatic and inadequate to contrast disease progression and mortality. Thus, there is an urgent need to clarify the molecular mechanisms responsible for this condition in order to identify new biomarkers and therapeuti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017